Triathlon Training – The role of stretching in sports performance

Stretching 4I’ve been an ardent fan and advocate of stretching routines since I started going to the gym in 2003, and so would never have thought that my knowledge of the subject could be considered so inadequate, until I read this article… Mike

What science has to say about the performance benefits of stretching and flexibility exercises

Flexibility training, or stretching, is used in varying forms by practically every coach, athlete and physiotherapist on a regular basis. That is to say, a form of stretching is likely to take place at some point in every training or therapy session. In spite of this, flexibility training is probably the least understood of all the fitness components, in terms of its scientific basis. This article will discuss the latest research findings and recommendations to explain why and how stretching should best be carried out

What does it mean?

Flexibility is defined as the static maximum range of motion (ROM) available about a joint. The largest limiting factor of static ROM is the structure of the joint itself. Thus, even after endless stretching exercise, there will be a limit as to how much movement is available. In addition, joint structures can vary between individuals, and this must be recognised when assessing flexibility standards in athletes. Most of the variability in static ROM is due to the elastic properties of the muscle and tendons attached across the joints. ‘Stiff’ muscles and tendons reduce the ROM while ‘compliant’ muscles and tendons increase ROM. It is these elastic properties that are altered after stretching exercises. When a muscle is held for some times under tension in a static stretch, the passive tension in the muscle declines, ie, the muscle ‘gives’ a little. This is called a ‘viscoelastic stretch relaxation response’. Passive tension is defined as the amount of external force required to lengthen the relaxed muscle. Obviously, the less external force required, the more pliable the muscle. This increased pliability is maintained for up to 90 minutes after the stretch (Moller et al, 1985)

In the long term, regular static stretching will bring about permanent increase in static ROM, which is associated with a decrease in passive tension. Experimentally, this was shown by Toft et al (1989), who found a 36% decrease in passive tension of the plantar flexors after three weeks of regular calf stretches. The relationship between static ROM and passive tension has been further supported by McHugh et al (1998). These researchers demonstrated that maximum static hip flexion ROM was inversely correlated with the passive tension of the hamstrings during the mid-range of hip flexion. This suggests that the ease with which the muscle can be stretched through the mid-ROM is increased if the maximum static ROM is improved. The concept that increased static ROM results in more pliant mechanical elastic properties of the muscle suggests that static stretching is beneficial to sports performance
Stretching 7

Flexibility and performance

Research into the effects of flexibility of stretch-shortening cycle (SSC) movements (plyometrics) has shown that increased flexibility is related to augmented force production during SSC movements. In contrast, running studies have shown that flexibility has little performance effect, which is odd because running is a kind of SSC movement. For example, De Vries (1963) showed that while pre-stretching increased static ROM in sprinters, it had no effect on speed or energy cost during the 100-yard dash. Interestingly, it has been shown that stiffer leg muscles in endurance athletes may make them more economical in terms of oxygen consumption at sub max speeds

The reason for these converse findings is probably related to the principle of specificity, which seems to underlie all sports training. The sprints and running studies above compared static ROM and stretches with performance, while the
SSC research compared active stiffness with performance. Holding a maximum static stretch, and reducing passive tension, is a completely different mechanical action to those practised in actual sports, where joints are moving at fast speeds and muscles are contracting while they are changing length. Thus static ROM may not be an appropriate flexibility measurement to relate to performance. On the other hand, active stiffness is a measurement of the force required to stretch a previously contracted muscle, and is therefore more sports-specific. It seems logical that the ease with which a contracted muscle can change length will have an impact on the performance of an SSC movement, so active stiffness is a more appropriate parameter to measure flexibility for sports performance.

Along the same lines, Iashvili (1983) found that active ROM and not passive ROM was more highly correlated with sports performance. In this instance, active ROM is defined as the ROM that athletes can produce by themselves, which will usually be less than the passive ROM, which is the maximum static ROM available when assisted manually or by gravity. For example, active ROM would be the height an athlete could lift his or her own leg up in front using the hip flexor muscles, whereas the passive ROM would be maximum height the leg could be lifted by a partner. Athletes must be able to generate the movement themselves, and this suggests that for improving sports performance it is active ROM that should be developed and not passive ROM. A sprinter must have enough active ROM in the hip flexors and hamstrings to comfortably achieve full knee lift and full hip extension at the toe-off point of the running gait to ensure a good technique and full stride length. Arguably, any further passive static ROM developed through passive
static stretching will not provide any extra benefit, especially since the joint angular speeds during sprinting are very high.

How to improve active ROM

The research suggests that, to improve sports performance, active stiffness should be reduced and active ROM should be improved. This will be more specific than static stretches which reduce passive tension, since sports involve both movement and muscular contractions. Unfortunately, I have found no studies looking at training methods to reduce active stiffness, but one can assume that they will be similar to the methods used to improve active ROM. Alter (1996) suggests that the active ROM can be improved by any kind of active movement through the available active range of motion. For instance, weight-training exercises have been shown to improve active ROM (Tumanyan & Dzhanya, 1984). Ballistic stretches will also develop the active ROM and are endorsed by sports coaches because they have the advantage of being executed at sports-specific speeds. But ballistic stretches must be performed with extreme caution, or they can cause muscle or tendon-strain injuries. If you use them, make sure you begin slowly and with a small ROM, building up speed and full ROM only towards the end.

It seems that, as with endurance, strength and speed training, flexibility training follows the specificity principle. This means that if you want to improve your ability to actively move through a full ROM, then active and ballistic mobility exercises, and not static stretching, are the answer. This supports the use of exercises employed by swimmers and runners during their warm-up routines, such as shoulder circles, bum kicks and high-knee skips. These exercises actively take the joints through their available ROM and thus help to prepare them and the muscles to be more pliable during the subsequent activity. Modern coaching techniques advocate the use of dynamic active mobility exercises as essential components of a warm-up routine in the belief that this kind of exercise will be more beneficial to sports performance and less likely to cause injury than static passive stretches. Unfortunately there is little research to support this. Nevertheless, based on the fact that these exercises will be more specific than static stretches and that, through experience, I have found them to be very beneficial, I would strongly recommend them.

Let’s take a specific example. To warm up the lower leg before any kind of running activity, I would first walk 20 yards on the toes with straight legs to warm up the calves, then walk on the heels 20 yards to warm up the dorsi flexors. I would then do 20 ankle flexion exercises with each leg. This involves holding one leg up so the ankle is free to move, first fully flexing the ankle bringing the toes right up and then fully extending the ankle pointing the toes away. Start slowly and then speed the movement up, so you flex and extend quickly throughout the full range of motion. This would be an open-chain exercise.

The next exercise would be to walk with an exaggerated ankle flexion extension, pulling the toes up on heel contact and pushing right up on to the toes at toe-off. Then finally, do the same while skipping, ensuring the full ankle movement is performed at sports-specific speed. The same rationale can be applied to the knee, hip and shoulder, warming up each joint by taking it through the full range of motion, first slowly and then fast, using both open and closed kinetic chain exercises which are specific to your sport. If you perform these kinds of exercises regularly, you should find that, as well as providing an effective warm-up, they will improve your active ROM and specific mobility patterns during sport.
Stretching 6

Injury and flexibility

The well-established general rule is that insufficient ROM, or stiffness, will increase muscle-strain risks. More specifically, athletes in different sports have varying flexibility profiles and thus varying flexibility needs in order to avoid injuries. Gleim & McHugh et al (1997) review various studies relating flexibility measures or stretching habits to injury incidence. Studies of soccer players show that flexibility may be important for preventing injuries. For example, one study showed that those who stretched regularly suffered fewer injuries, while another showed that tighter players suffered more groin-strain injuries, and a third showed a relationship between tightness and knee pain.

These findings seem to confirm the correlation between muscular tightness and increased muscle-strain risks. Yet studies of endurance runners have not shown the same results. For instance, in one famous study by Jacobs & Berson (1986), it was found that those who stretched beforehand were injured more often than non-stretchers. Other running studies have found no relationship whatsoever between flexibility or stretching habits and injury. On the other hand, one study of sprinters found that 4° less hip flexion led to a greater incidence of hamstring strain. The reason for these apparently contradictory findings is the specific nature of each sport. With endurance running, the ankle, knee and hip joints stay within the mid-range of motion throughout the whole gait cycle and therefore maximum static ROM will have little effect. Sprinting and football involve movements of much larger ROM and so depend more heavily on good flexibility

There are other established biomechanical relationships between flexibility and injury. For example, ankle ROM is inversely related to rear foot pronation and internal tibia rotation. In other words, tight calf muscles are associated with greater amounts of rear foot pronation and lower-leg internal rotation. In excess, these two factors can lead to foot, lower-leg and knee problems. Poor flexibility in the hip flexor muscles may lead to an anterior pelvic tilt, where the pelvis is tilted down to the front. This increases the lumbar lordosis, which is the sway in the lower back. This in turn can lead to a tightening of the lower-back muscles and predispose the back to injury

Similarly, tight pectoral muscles can lead to a round-shouldered upper-back posture called kyphosis. During throwing and shoulder movements, this forward alignment of the shoulder can increase the risks of shoulder-impingement problems. A flexibility/injury relationship also exists for young adolescents. During the pubertal growth spurt, the tendons and muscles tighten dramatically as they lag behind the rapid bone growth. For young athletes this poor flexibility may lead to injury problems, especially tendinitis-type injuries such as Osgood Schlatters. Thus regular stretching is essential for young athletes. Remember it is biological age that counts, so children in the same team or squad may need to pay extra attention to flexibility at different times

Don’t overdo it!

As a general guide, when it comes to preventing injury, one should make sure that athletes have a normal ROM is all the major muscle groups and correct postural alignment in the back. For instance, hamstring mobility should allow for 90° of straight-leg hip flexion. Any further ROM should be developed only if analysis of the sport’s movements suggests that extra mobility is required. The obvious example is gymnastics, where contestants must perform movements with extreme ROMs. A footballer who developed the kinds of flexibility a gymnast needs would be at greater risk of injury since hypermobile joints become unstable. This relationship has been shown in American football players, with those who have over-developed hamstring flexibility suffering more from ACL strain. A likely reason is that the flexible hamstrings allow the knee to hyperextend more readily.

So the general rule regarding the relationship between flexibility and injury is that a normal ROM in each muscle group will protect against injury. However, specific movements in each sport that require extra ROM will need extra flexibility development to guard against injury. This may mean that an endurance runner’s hamstring ROM may be less than a sprinter’s, while a sprinter may not need such a large ROM in the groin as a tennis player, whose sport demands large lateral lunging movements. Extreme ROMs should only be developed out of necessity, since they lead to higher joint-injury risks, just as small ROMs lead to higher muscle-strain risks

What type of stretches?

The job of the coach and therapist is to know the normal ROM for each muscle group and to ensure the athlete achieves and maintains these standards. Christopher Norris’s book (see references) describes in detail how to assess posture and flexibility in all major muscles and should be used as a guide. If any extra flexibility in specific muscles for specific movements is required, then this should also be developed. To develop flexibility, research suggests (see Alter, 1996) that static stretches should be held for at least 20 seconds, possibly up to 60 seconds, to gain a benefit. The stretches should also be performed regularly, ideally twice a day, every day. Stretches should not be painful, and should not cause the muscle to shake. Instead, one should feel a mild-intensity stretch and maintain that position. If the tension eases, taking the stretch a little further and holding the new position will help gains in ROM.

Using partner-assisted stretches and PNF stretching will also produce the same effect. PNF stretches involve applying an isometric contraction against the stretch to invoke a greater relaxation response and thus enable further ROM to be reached. The protocol is for the partner to take the stretch to the initial end point and hold that position. After about 20 seconds, the athlete opposes the position with a strong 10-second isometric contraction pushing against the partner. The athlete then relaxes, breathes out, and the stretching muscle should relax, allowing the partner to take it further. This is repeated. Some research has shown that PNF stretches are very effective, although one very recent study by Golhofer et al (European Journal of Applied Physiology, 1998, 77: 89-97) casts doubt on this. These researchers found that while there was a relaxation response post-isometric contraction, it only lasted for a very short time, and so no real benefit was gained.
Stretching 8

Getting the mechanics right

Regardless of whether you choose conventional or PNF stretches, by far the most important factor for stretching effectiveness is to choose an exercise with the correct mechanics. The purpose of static stretches is to improve or maintain the ROM of a particular muscle, and the mechanics of the exercise must ensure that the target muscle is being stretched effectively.

For example, a popular, if old-fashioned, way to stretch the hamstrings is to perform a touch-toes stretch. However, the touch-toes position requires lower-back flexion, which leads to a change in pelvic position, and so the effectiveness of the stretch for the hamstrings is compromised. The mechanically correct way to isolate the hamstrings is to place one foot slightly in front of the other, leaning forward from the hips and keeping the back arched. Supporting your weight with your hands on the rear leg, you should then feel the stretch in the front leg. This position ensures the back does not flex and the pelvis remains tilted forward, so the hamstrings are lengthened optimally. Try the two different positions for yourself and you should feel a significant improvement in hamstring stretch. You may even find that by keeping your back in a strict arch you may not need to lean forward very far to achieve an effective hamstring stretch.

The message here is that you must ensure that any static stretching exercise you perform allows the target muscle to be lengthened effectively, without being limited by other structures. The mechanics of the stretch should also ensure that the athlete is stable and that there are no undue stresses on any of the joints. For example, the hurdles stretch places a strain on the medial ligaments of the knee and is no longer recommended. Similarly, with the hamstring stretch discussed above, it is important to support one’s weight with the hands on the rear leg so that the lower back is protected – leaning forward unsupported from a standing position places a great strain on it (see both Norris, 1998, and Alter, 1996, for safe and effective stretches for all muscle groups)

The bottom line?

There is still much to be researched about stretching methods before all the definitive answers can be given. However, it is probably fair to say that some of us need to look again at certain stretching techniques and ask why we do them. In particular, static stretching as part of a warm-up is very common, and yet the research, and logic, suggest that static stretches will do little to help prevent injuries or improve muscle function before an activity. Instead, active mobility exercises, those that take the muscles dynamically through the full ROM, starting slowly and building up to sports-specific speeds, are more appropriate, both pre-exercise and generally to develop active ROM for sports performance.

The role of static stretches is separate from the active flexibility exercises. Rather than as part of a warm-up, static stretches are necessary to develop the correct maximum static ROM that is needed to avoid muscle-strain injuries. Thus static stretches should be used either after training, when the muscles are warm, or in a separate context. These stretches must be effective, safe and stable in terms of their mechanics. As mentioned, a normal ROM in all muscle groups, plus any sports-specific ROMs, should be developed or maintained with static stretches following the above guidelines. If flexibility is well below normal, then PNF stretches may be considered to improve flexibility more quickly

Some of you may not agree with my conclusions about the role of the different types of stretching. However, I ask you to consider carefully the specificity principle of training and apply that to flexibility in the same way as you would to strength. For instance, no one would consider using only isometric contractions to develop strength in athletes. Instead, coaches try to devise strength exercises that are as specific as possible, both in terms of speed and mechanics, to the sports-specific condition. That said, why do so many people use only static stretches at the maximum ROM to develop flexibility for sport which involves active motion through various ROMs depending on the movements?

For further reading, you will find most of the references discussed, and more, in the list of recommended books and articles that accompanies this one

Raphael Brandon

This article was taken from the Peak Performance newsletter, the number one source of sports science, training and research. Click here to access these articles as soon as they are released to maximise your performance

Triathlon Training – Managing Arrhythmia Part 2

Heart NodesToday is an extremely sad day for me…

My waking HR is still all over the place for the last 3 days now – 32bpm to 119bpm. Further research indicates that the drug Verapamil may not always be the way to go in treating arrhythmia, and in fact in the long term may even worsen the condition and increase the likelihood of sudden cardiac death!

I stopped taking the medication and re-evaluated the situation.

My heart specialist also indicated that one or two months of “de-training” may well sort out much of my ventricular bigeminy (low HR).

I feel this should now be my first course of action.

I also have SVT (Supraventricular Tachycardia) causing in my case fast HRs up to 240bpm (or more), and the only alternative other than the unacceptable drugs would require heart surgery involving cryoablation (freezing) of heart tissue around the SA / AV nodes that are responsible for the extra signals and high heart rates.

http://en.wikipedia.org/wiki/Supraventricular_tachycardia

I feel this should be my second course of action (medical aid permitting).

As today is the last day for 70.3 late registrations, I decided that it would be very unwise for me to continue with training for this and IM 2010 until my heart conditions have been properly sorted out.

So basically that’s it for now. I will be spending the next two months trying to get a lot of rest and doing  only light short duration stuff (not more than once a day), and a lot of that mainly Pilates and Yoga. During this time I will also see to getting the surgery done if and when possible.

There is still 2011…

Nutrition – Carbo loading without overloading on glucose

Carbo LoadingAt last an authoritative no BS article on how to be fully fueled and at your best on the start line for that big race – Mike.

Carbo-loading

Glycogen without glucose gluttony: your new carb strategy for optimum performance.

If you can work out a way to boost your muscle glycogen to supra-normal levels, your performances in athletic events lasting longer than about 60 minutes will be much improved. Glycogen is a key fuel during such exertions, but a basic problem is that, unlike fat, glycogen cannot be stored in your body in relatively limitless amounts.

In addition, the glycogen in your muscles is quite rapidly depleted during fairly intense exercise, so that muscles begin to notice a shortage of glycogen after 60-90 minutes of activity. Yes, they can call on fat to provide fuel for further contractions and force production, but fat supports a lower intensity of exercise, and thus movement speed drops.

This is why athletes who do a poor job of muscular glycogen replenishment before lengthy workouts, games or races usually slow down after 60 minutes, while their glycogen-loaded counterparts continue to work at the same intensity. So, the key question is: how do you make sure that you are amply glycogen-loaded? Once it became clear in the 1960s that glycogen was especially important during exercise lasting longer than an hour, Swedish scientists began to work at a furious pace to answer this question.

A Swede named Ahlborg developed a protocol in which athletes performed a bout of very strenuous exercise and then consumed a high-carbohydrate diet for a period of three days while training normally (1). It worked! Athletes in the Ahlborg study boosted muscle glycogen above 150 mmol.kg-1 wet weight (‘normal’ levels are about 80-120).

There was just one problem, though – that strenuous bout of exercise. Usually, athletes want to be especially glycogen-loaded for a big race, and the notion of carrying out a very strenuous exertion lasting longer than an hour just three days before a big competition (in order to stimulate high rates of glycogen synthesis) was troublesome. Such efforts could interfere with tapering and could produce wear and tear on muscles which were frantically trying to heal themselves before a major event.

Another problem also became apparent: athletes sometimes overloaded themselves during their three-day carb-fests. Instead of feeling unusually energetic, they ended up being bloated and sluggish on race day. The Ahlborg plan just wouldn’t do!

Ahlborg’s colleague, a fellow Swede named Bergstrom, developed a slightly different plan. Bergstrom advised athletes to first engage in a rugged bout of strenuous exercise, then consume a high-fat, low-carbohydrate diet for three days (to really drive glycogen levels down), then undertake strenuous exercise again (just to make sure that muscle-glycogen levels were really low), and finally feast on carbohydrates for the seemingly magical period of three days, while training very lightly. This technique also succeeded in magnifying muscle glycogen concentrations.

The perils of strenuous exercise bouts before a major event

Again there were problems, however. Specifically, Bergie had failed to take into account the fact that two bouts of very strenuous, glycogen-depleting exercise during the week before a very important competition might be a bad idea. In addition, the three initial days of high-fat, low-carb eating left athletes irritable and less than super-confident.

Finally, the three-day carbohydrate festival at the end of the Bergstrom protocol again left many athletes feeling gigantic and slow, rather than sleek and fast. Mike Sherman of Ohio State entered these troubled waters in the early 1980s with a very sensible and seemingly more practical plan for glycogen loading.

Addressing the paradox of recommending strenuous exercise during the week before a major event, Sherman’s stratagem called for no heavy exertion, and in fact allowed decreasing amounts of exercise on consecutive days. In Sherman’s six-day plan, athletes ingested a routine, ‘mixed’ (modest carbohydrate content) diet for three days and then stoked up on carbs for the next three days.

Like the techniques developed by Ahlborg and Bergstrom, the Sherman stratagem ‘worked’, producing muscle glycogen levels above 150 mmol.kg-1 wet weight. However, the overall plan once again left many athletes feeling sluggish, and many individuals did not particularly want to cut back on training uniformly and relentlessly during their tapering periods, preferring to alternate days of doing almost nothing with days of performing modest amounts of quality work.

In addition, many athletes wisely questioned the necessity of the initial three days of mixed-diet eating, and so Sherman’s plan was modified to consist of just the three days of high-carb eating, accompanied by successively lighter workouts.

Unafraid to enter this controversy, my own US newsletter Running Research News has for the past 10 years been recommending routine high-carbohydrate consumption (in the form of about four grams of carbohydrate per pound of body weight per day) for endurance athletes. This recommendation is based on research carried out by Clyde Williams and colleagues at Loughborough University, showing that endurance athletes engaged in serious training who consume less carbohydrate than this often end up gradually depleting their muscle glycogen stores, leading to lower-quality workouts and poorer performances.

Our position has been that, if this strategy leads to routinely high levels of muscle glycogen, there is no special need to try to ram more carbs home shortly before races and extreme workouts. The reduced training employed in these times will allow extra glycogen synthesis to occur in muscles, and the chronically carb-rich diet will furnish the carbs necessary to get the job done.

Admittedly, though, the RRN plan is not without its own perils: for one thing, 4g of carbohydrate per pound of body weight per day has been shown to be a bit rich for some athletes, especially those who have previously restricted their calorie and carb intake. These athletes, many of whom may routinely take in just 2g per pound per day (we have even documented one quite successful athlete who was trying to get by with 1g!), may gain weight and feel extremely lethargic if they make a quantum leap to our ideal of 4g/lb/day.

So what’s the answer? Is there a simple, quick way to maximise muscle glycogen levels without fuss, extended periods of unusual eating or disruption of normal training?

In a word, yes! Thanks to research carried out at the Department of Human Movement and Exercise Science at the University of Western Australia, we now have such a plan (4). This plan takes just a day, and it produces incredibly high muscle glycogen levels!

Intensity and glycogen synthesis

The Western Australia work pivots around one key concept: very high intensities of exercise actually stimulate higher rates of muscle glycogen synthesis than moderate intensities of exercise carried out for prolonged periods. Naturally, athletes have been a little afraid to engage in very high-intensity exercise during their tapering, glycogen-loading periods, but the Australian researchers asked, quite reasonably: what if the intense exercise is just long enough to dramatically kick-start glycogen synthesis – but not so long as to interfere with tapering and recovery?

In their ingenious plan, the Australians settled on a very short duration of intense exercise – just three minutes! Could such a brief period of exertion carry the broad load of heavy carbohydrate loading on its apparently puny shoulders? To find out, the Australians worked with seven healthy, endurance-trained male subjects.

The athletes averaged 22 years of age, trained about 10 hours per week, possessed max aerobic capacities of around 56 ml.kg-1.min-1, and normally consumed about 6.6 grams of carbohydrate per kg of lean body mass per day (e.g. 3g of carbs per pound of lean body mass per day and 2.55g of carbs per pound of body weight per day).

Such intakes of carbs are fairly routine among endurance athletes, and thus the Australians had created a nice test of whether their one-day plan could really dramatically bolster muscle glycogen contents in typical athletes. On the morning the one-day high-carb diet commenced, the athletes had muscle biopsies performed on their quadriceps muscles (to assess glycogen levels), carried out a five-minute warm-up on a cycle ergometer, and then blasted through a sustained 150-second sprint on the ergometer at a very high intensity of 130% VO2max.

At the end of this sprint, the athletes – without a second of hesitation – embarked on an all-out 30s sprint. Lactate levels at the end of this three-minute period of intense work soared to 21.9 mM/litre!

When carbo windows are open widest

Following a cool-down, each subject began the 24-hour high-carb eating plan, during which they ingested 12g of relatively high-glycaemic-index carbs per kg of lean body mass (e.g. 5.45g per pound of lean body mass and 4.6g per pound of body weight, just above the RRN recommendation).

Crucially, the ingestion of carbohydrate was initiated within 20 minutes of the end of the exercise. (Remember that your muscles’ carbo ‘windows’ are open widest shortly after a bout of exercise ends; by two hours-or-so after exercise, they are open just a crack.) The participants ate high-carb foods they liked, including pasta, bread and rice but they also poured in extra carbohydrate in the form of the maltodextrose-rich drink Polycose, produced by Ross Laboratories in Columbus, Ohio.

Indeed, about 80% of the carbs ingested over the 24-hour period came from this drink. The energy ingested as fat and protein, by contrast, was marginal – less than 10% of the caloric total for the day.

On the morning after the exercise and initiation of the carbo-loading regime, a second quadriceps muscle biopsy was taken. This revealed incredibly high levels of muscle glycogen; the mean glycogen concentration in the quads, which had been just 109 mmol.kg-1 wet weight before the trial, soared to 198.2 – an 82-% increase – afterwards!

Analysis revealed that both slow and fast-twitch muscle fibres did an equally fantastic job of storing super concentrations of glycogen. The Australian plan was a real winner! It is the fastest glycogen-loading plan ever reported in the scientific literature.

It also produces end glycogen concentrations (~198 mmol.kg-1 wet weight) which are extraordinarily high – considerably higher than the 131-153 readings often reported after three or even six days of traditional carbo-loading.

Preventing dips in muscle glycogen

The Australian research has several practical implications. If you are training strenuously, you need to worry about preventing dips in your day-to-day muscle glycogen levels. One way to do that is to routinely consume a high-carb diet, but another strategy – based on the Australian findings – would be to add in about three minutes of intense exercise near the end of many of your easy-to-moderate-intensity workouts.

Such short periods of high-intensity work should not increase your risk of injury or burn-out, should enhance your fitness and should kick-start the post-workout glycogen-synthesis process, helping to ensure that you will have enough glycogen in your muscles for the next day’s workout. Of course, if your workout is already intense, there is no need to add anything to it.

This recommendation to slip in three minutes of intense stuff near the end of an easy workout may seem a bit bizarre, but it may well prove to be an exceedingly good strategy. Bear in mind that after fairly prolonged exercise consisting of only moderate-intensity work, it usually takes about 24 hours for muscle glycogen stores to return to pre-exercise levels, even when a high-carb diet is followed (6).

The true glycogen-loading following such exercise does not really occur until the second and third days afterwards. By contrast, with the Aussie three-minute plan, super-loading occurs within the first 24 hours. Thus, it may be much easier to build – rather than merely maintain – muscle glycogen concentrations when a pinch of high intensity is added to workouts, and for some athletes the intensity may actually mean boosting glycogen levels back up to performance-enhancing levels (if they have been slogging away for a while with too-low levels of carbohydrate in their muscles).

Note, too, how wonderfully well the Australian plan would work for a marathon runner (or other endurance athlete getting ready for a competition lasting longer than an hour). The athlete could follow his normal diet during the week leading up to the race, with no risk of bloating, lethargy, heaviness or gastric discomfort, and training could be tapered appropriately.

The day before the big race, he could warm up, go hard for three minutes and then begin consuming large quantities of carbs. He should feel great – and have about 200 mmol.kg-1 wet weight in his leg muscles at the start line the following morning. He might even find his overall running fitness inched up a notch.

Worried about three minutes of very hard running the day before the marathon? Perhaps it might cause your hamstrings to twitch a bit on race day? Don’t worry: you can carry out the 24-hour plan two – or even three – days before your major event and still go to the start line with supra-normal concentrations of glycogen in your muscles.

Research has shown that once such concentrations are achieved, they can be maintained for a couple of days, providing athletes eat normal amounts of carbohydrate and do not carry out much exercise. Since you will be tapering, you won’t be doing much exercise, so all should be well. Here, then, is your guide to carbo-loading Aussie-style:

  1. Start eating carbs as soon as possible after you finish your exercise.
  2. Consume high-glycaemic-index foods during your 24-hour period, and don’t be afraid to include high-carb drinks like Polycose. Foods that count as high-glycaemic-index items (with glycaemic-index values above 60) include the following: croissants, crumpets, banana or apricot muffins, pancakes, waffles, scones, cranberry-juice cocktail, Gatorade, bagels, baguettes, bread stuffing, oat bread, white bread, flatbread, cornflakes, Pop Tarts, Raisin Bran, Special K, cornmeal, boiled sweet corn, couscous, most crackers and crispbreads, rice cakes, chocolate ice cream, apricots in syrup, dried dates, dried figs, papaya, raisins, watermelon, fruit bars, a plain pizza with cheese and tomato sauce, kugel, gnocchi, udon noodles, jelly beans, black-bean soup, split-pea soup, broad beans, parsnips, swede, most baked potatoes (especially if baked without fat), most boiled potatoes, mashed potatoes, and tapioca. You’ll need to read box labels and use nutritional charts to determine how much carbohydrate you are really taking in during your 24-hour period; remember that you are aiming for about 4.6g of carbohydrate per pound of body weight. If you fret about consuming high-glycaemic-index foods, bear in mind that many of the foods consumed heavily and regularly by élite Kenyan runners have very high glycaemic indices. For example, maize-meal porridge checks in with a glycemic index of 109. (The standard – glucose – is set at 100, which means that maize-meal porridge gets glucose into the bloodstream more quickly than glucose itself!) Another popular Kenyan breakfast item – millet-flour porridge – has a similarly whopping glycaemic index of 107. Kenyan rice – a true staple of the Kenyan runners’ diet – has an eye-popping glycaemic index of 112, and cornmeal – used to create the ubiquitous Kenyan national dish, ugali, has an index of about 70. Kenyan ‘wholemeal’ wheat flour checks in at 87, and chapati, a flat wheat bread settles for 66.
  3. Once you have completed your warm-up, three-minute burst and cool down, do not exercise again during the next 24 hours as this will damp down your muscles’ glycogen-synthesis rate.
  4. Don’t be afraid of the lactate you will inevitably generate during your three-minute surge. Remember that lactate does you no harm; in fact, there is evidence that the lactate itself may spur the increased rate of glycogen synthesis which occurs after intense exercise.
  5. The Aussie plan allows you to relax! If work or other pressures have kept you from carbo-loading as much as you would like before a major race, you can still do a tremendous job of stocking up on muscle glycogen during the last 24 hours before your event.
  6. Make sure you try out the Aussie regime a couple of times in training before you use it in competition. (By trying it out, I mean using the warm-up, three-minute burst, cool-down and 24-hour carb-eating scheme, followed by a long run afterwards.) There should be no major side effects associated with the plan, but you should at least prepare your body for it. If the regime doesn’t seem to be working well, try using the 24-hour plan two days before your long workouts or races, while carrying out little exercise and eating normally the day before the event. This intervening day may allow you to recover from your three-minute blast, without reducing your muscle glycogen concentrations.

Owen Anderson

This article was taken from the Peak Performance newsletter, the number one source of sports science, training and research. Click here to access these articles as soon as they are released to maximise your performance

spacer