Nutrition – Carbo loading without overloading on glucose

carb loading - Nutrition - Carbo loading without overloading on glucoseAt last an authoritative no BS article on how to be fully fueled and at your best on the start line for that big race – Mike.

Carbo-loading

Glycogen without glucose gluttony: your new carb strategy for optimum performance.

If you can work out a way to boost your muscle glycogen to supra-normal levels, your performances in athletic events lasting longer than about 60 minutes will be much improved. Glycogen is a key fuel during such exertions, but a basic problem is that, unlike fat, glycogen cannot be stored in your body in relatively limitless amounts.

In addition, the glycogen in your muscles is quite rapidly depleted during fairly intense exercise, so that muscles begin to notice a shortage of glycogen after 60-90 minutes of activity. Yes, they can call on fat to provide fuel for further contractions and force production, but fat supports a lower intensity of exercise, and thus movement speed drops.

This is why athletes who do a poor job of muscular glycogen replenishment before lengthy workouts, games or races usually slow down after 60 minutes, while their glycogen-loaded counterparts continue to work at the same intensity. So, the key question is: how do you make sure that you are amply glycogen-loaded? Once it became clear in the 1960s that glycogen was especially important during exercise lasting longer than an hour, Swedish scientists began to work at a furious pace to answer this question.

A Swede named Ahlborg developed a protocol in which athletes performed a bout of very strenuous exercise and then consumed a high-carbohydrate diet for a period of three days while training normally (1). It worked! Athletes in the Ahlborg study boosted muscle glycogen above 150 mmol.kg-1 wet weight (‘normal’ levels are about 80-120).

There was just one problem, though – that strenuous bout of exercise. Usually, athletes want to be especially glycogen-loaded for a big race, and the notion of carrying out a very strenuous exertion lasting longer than an hour just three days before a big competition (in order to stimulate high rates of glycogen synthesis) was troublesome. Such efforts could interfere with tapering and could produce wear and tear on muscles which were frantically trying to heal themselves before a major event.

Another problem also became apparent: athletes sometimes overloaded themselves during their three-day carb-fests. Instead of feeling unusually energetic, they ended up being bloated and sluggish on race day. The Ahlborg plan just wouldn’t do!

Ahlborg’s colleague, a fellow Swede named Bergstrom, developed a slightly different plan. Bergstrom advised athletes to first engage in a rugged bout of strenuous exercise, then consume a high-fat, low-carbohydrate diet for three days (to really drive glycogen levels down), then undertake strenuous exercise again (just to make sure that muscle-glycogen levels were really low), and finally feast on carbohydrates for the seemingly magical period of three days, while training very lightly. This technique also succeeded in magnifying muscle glycogen concentrations.

The perils of strenuous exercise bouts before a major event

Again there were problems, however. Specifically, Bergie had failed to take into account the fact that two bouts of very strenuous, glycogen-depleting exercise during the week before a very important competition might be a bad idea. In addition, the three initial days of high-fat, low-carb eating left athletes irritable and less than super-confident.

Finally, the three-day carbohydrate festival at the end of the Bergstrom protocol again left many athletes feeling gigantic and slow, rather than sleek and fast. Mike Sherman of Ohio State entered these troubled waters in the early 1980s with a very sensible and seemingly more practical plan for glycogen loading.

Addressing the paradox of recommending strenuous exercise during the week before a major event, Sherman’s stratagem called for no heavy exertion, and in fact allowed decreasing amounts of exercise on consecutive days. In Sherman’s six-day plan, athletes ingested a routine, ‘mixed’ (modest carbohydrate content) diet for three days and then stoked up on carbs for the next three days.

Like the techniques developed by Ahlborg and Bergstrom, the Sherman stratagem ‘worked’, producing muscle glycogen levels above 150 mmol.kg-1 wet weight. However, the overall plan once again left many athletes feeling sluggish, and many individuals did not particularly want to cut back on training uniformly and relentlessly during their tapering periods, preferring to alternate days of doing almost nothing with days of performing modest amounts of quality work.

In addition, many athletes wisely questioned the necessity of the initial three days of mixed-diet eating, and so Sherman’s plan was modified to consist of just the three days of high-carb eating, accompanied by successively lighter workouts.

Unafraid to enter this controversy, my own US newsletter Running Research News has for the past 10 years been recommending routine high-carbohydrate consumption (in the form of about four grams of carbohydrate per pound of body weight per day) for endurance athletes. This recommendation is based on research carried out by Clyde Williams and colleagues at Loughborough University, showing that endurance athletes engaged in serious training who consume less carbohydrate than this often end up gradually depleting their muscle glycogen stores, leading to lower-quality workouts and poorer performances.

Our position has been that, if this strategy leads to routinely high levels of muscle glycogen, there is no special need to try to ram more carbs home shortly before races and extreme workouts. The reduced training employed in these times will allow extra glycogen synthesis to occur in muscles, and the chronically carb-rich diet will furnish the carbs necessary to get the job done.

Admittedly, though, the RRN plan is not without its own perils: for one thing, 4g of carbohydrate per pound of body weight per day has been shown to be a bit rich for some athletes, especially those who have previously restricted their calorie and carb intake. These athletes, many of whom may routinely take in just 2g per pound per day (we have even documented one quite successful athlete who was trying to get by with 1g!), may gain weight and feel extremely lethargic if they make a quantum leap to our ideal of 4g/lb/day.

So what’s the answer? Is there a simple, quick way to maximise muscle glycogen levels without fuss, extended periods of unusual eating or disruption of normal training?

In a word, yes! Thanks to research carried out at the Department of Human Movement and Exercise Science at the University of Western Australia, we now have such a plan (4). This plan takes just a day, and it produces incredibly high muscle glycogen levels!

Intensity and glycogen synthesis

The Western Australia work pivots around one key concept: very high intensities of exercise actually stimulate higher rates of muscle glycogen synthesis than moderate intensities of exercise carried out for prolonged periods. Naturally, athletes have been a little afraid to engage in very high-intensity exercise during their tapering, glycogen-loading periods, but the Australian researchers asked, quite reasonably: what if the intense exercise is just long enough to dramatically kick-start glycogen synthesis – but not so long as to interfere with tapering and recovery?

In their ingenious plan, the Australians settled on a very short duration of intense exercise – just three minutes! Could such a brief period of exertion carry the broad load of heavy carbohydrate loading on its apparently puny shoulders? To find out, the Australians worked with seven healthy, endurance-trained male subjects.

The athletes averaged 22 years of age, trained about 10 hours per week, possessed max aerobic capacities of around 56 ml.kg-1.min-1, and normally consumed about 6.6 grams of carbohydrate per kg of lean body mass per day (e.g. 3g of carbs per pound of lean body mass per day and 2.55g of carbs per pound of body weight per day).

Such intakes of carbs are fairly routine among endurance athletes, and thus the Australians had created a nice test of whether their one-day plan could really dramatically bolster muscle glycogen contents in typical athletes. On the morning the one-day high-carb diet commenced, the athletes had muscle biopsies performed on their quadriceps muscles (to assess glycogen levels), carried out a five-minute warm-up on a cycle ergometer, and then blasted through a sustained 150-second sprint on the ergometer at a very high intensity of 130% VO2max.

At the end of this sprint, the athletes – without a second of hesitation – embarked on an all-out 30s sprint. Lactate levels at the end of this three-minute period of intense work soared to 21.9 mM/litre!

When carbo windows are open widest

Following a cool-down, each subject began the 24-hour high-carb eating plan, during which they ingested 12g of relatively high-glycaemic-index carbs per kg of lean body mass (e.g. 5.45g per pound of lean body mass and 4.6g per pound of body weight, just above the RRN recommendation).

Crucially, the ingestion of carbohydrate was initiated within 20 minutes of the end of the exercise. (Remember that your muscles’ carbo ‘windows’ are open widest shortly after a bout of exercise ends; by two hours-or-so after exercise, they are open just a crack.) The participants ate high-carb foods they liked, including pasta, bread and rice but they also poured in extra carbohydrate in the form of the maltodextrose-rich drink Polycose, produced by Ross Laboratories in Columbus, Ohio.

Indeed, about 80% of the carbs ingested over the 24-hour period came from this drink. The energy ingested as fat and protein, by contrast, was marginal – less than 10% of the caloric total for the day.

On the morning after the exercise and initiation of the carbo-loading regime, a second quadriceps muscle biopsy was taken. This revealed incredibly high levels of muscle glycogen; the mean glycogen concentration in the quads, which had been just 109 mmol.kg-1 wet weight before the trial, soared to 198.2 – an 82-% increase – afterwards!

Analysis revealed that both slow and fast-twitch muscle fibres did an equally fantastic job of storing super concentrations of glycogen. The Australian plan was a real winner! It is the fastest glycogen-loading plan ever reported in the scientific literature.

It also produces end glycogen concentrations (~198 mmol.kg-1 wet weight) which are extraordinarily high – considerably higher than the 131-153 readings often reported after three or even six days of traditional carbo-loading.

Preventing dips in muscle glycogen

The Australian research has several practical implications. If you are training strenuously, you need to worry about preventing dips in your day-to-day muscle glycogen levels. One way to do that is to routinely consume a high-carb diet, but another strategy – based on the Australian findings – would be to add in about three minutes of intense exercise near the end of many of your easy-to-moderate-intensity workouts.

Such short periods of high-intensity work should not increase your risk of injury or burn-out, should enhance your fitness and should kick-start the post-workout glycogen-synthesis process, helping to ensure that you will have enough glycogen in your muscles for the next day’s workout. Of course, if your workout is already intense, there is no need to add anything to it.

This recommendation to slip in three minutes of intense stuff near the end of an easy workout may seem a bit bizarre, but it may well prove to be an exceedingly good strategy. Bear in mind that after fairly prolonged exercise consisting of only moderate-intensity work, it usually takes about 24 hours for muscle glycogen stores to return to pre-exercise levels, even when a high-carb diet is followed (6).

The true glycogen-loading following such exercise does not really occur until the second and third days afterwards. By contrast, with the Aussie three-minute plan, super-loading occurs within the first 24 hours. Thus, it may be much easier to build – rather than merely maintain – muscle glycogen concentrations when a pinch of high intensity is added to workouts, and for some athletes the intensity may actually mean boosting glycogen levels back up to performance-enhancing levels (if they have been slogging away for a while with too-low levels of carbohydrate in their muscles).

Note, too, how wonderfully well the Australian plan would work for a marathon runner (or other endurance athlete getting ready for a competition lasting longer than an hour). The athlete could follow his normal diet during the week leading up to the race, with no risk of bloating, lethargy, heaviness or gastric discomfort, and training could be tapered appropriately.

The day before the big race, he could warm up, go hard for three minutes and then begin consuming large quantities of carbs. He should feel great – and have about 200 mmol.kg-1 wet weight in his leg muscles at the start line the following morning. He might even find his overall running fitness inched up a notch.

Worried about three minutes of very hard running the day before the marathon? Perhaps it might cause your hamstrings to twitch a bit on race day? Don’t worry: you can carry out the 24-hour plan two – or even three – days before your major event and still go to the start line with supra-normal concentrations of glycogen in your muscles.

Research has shown that once such concentrations are achieved, they can be maintained for a couple of days, providing athletes eat normal amounts of carbohydrate and do not carry out much exercise. Since you will be tapering, you won’t be doing much exercise, so all should be well. Here, then, is your guide to carbo-loading Aussie-style:

  1. Start eating carbs as soon as possible after you finish your exercise.
  2. Consume high-glycaemic-index foods during your 24-hour period, and don’t be afraid to include high-carb drinks like Polycose. Foods that count as high-glycaemic-index items (with glycaemic-index values above 60) include the following: croissants, crumpets, banana or apricot muffins, pancakes, waffles, scones, cranberry-juice cocktail, Gatorade, bagels, baguettes, bread stuffing, oat bread, white bread, flatbread, cornflakes, Pop Tarts, Raisin Bran, Special K, cornmeal, boiled sweet corn, couscous, most crackers and crispbreads, rice cakes, chocolate ice cream, apricots in syrup, dried dates, dried figs, papaya, raisins, watermelon, fruit bars, a plain pizza with cheese and tomato sauce, kugel, gnocchi, udon noodles, jelly beans, black-bean soup, split-pea soup, broad beans, parsnips, swede, most baked potatoes (especially if baked without fat), most boiled potatoes, mashed potatoes, and tapioca. You’ll need to read box labels and use nutritional charts to determine how much carbohydrate you are really taking in during your 24-hour period; remember that you are aiming for about 4.6g of carbohydrate per pound of body weight. If you fret about consuming high-glycaemic-index foods, bear in mind that many of the foods consumed heavily and regularly by élite Kenyan runners have very high glycaemic indices. For example, maize-meal porridge checks in with a glycemic index of 109. (The standard – glucose – is set at 100, which means that maize-meal porridge gets glucose into the bloodstream more quickly than glucose itself!) Another popular Kenyan breakfast item – millet-flour porridge – has a similarly whopping glycaemic index of 107. Kenyan rice – a true staple of the Kenyan runners’ diet – has an eye-popping glycaemic index of 112, and cornmeal – used to create the ubiquitous Kenyan national dish, ugali, has an index of about 70. Kenyan ‘wholemeal’ wheat flour checks in at 87, and chapati, a flat wheat bread settles for 66.
  3. Once you have completed your warm-up, three-minute burst and cool down, do not exercise again during the next 24 hours as this will damp down your muscles’ glycogen-synthesis rate.
  4. Don’t be afraid of the lactate you will inevitably generate during your three-minute surge. Remember that lactate does you no harm; in fact, there is evidence that the lactate itself may spur the increased rate of glycogen synthesis which occurs after intense exercise.
  5. The Aussie plan allows you to relax! If work or other pressures have kept you from carbo-loading as much as you would like before a major race, you can still do a tremendous job of stocking up on muscle glycogen during the last 24 hours before your event.
  6. Make sure you try out the Aussie regime a couple of times in training before you use it in competition. (By trying it out, I mean using the warm-up, three-minute burst, cool-down and 24-hour carb-eating scheme, followed by a long run afterwards.) There should be no major side effects associated with the plan, but you should at least prepare your body for it. If the regime doesn’t seem to be working well, try using the 24-hour plan two days before your long workouts or races, while carrying out little exercise and eating normally the day before the event. This intervening day may allow you to recover from your three-minute blast, without reducing your muscle glycogen concentrations.

Owen Anderson

This article was taken from the Peak Performance newsletter, the number one source of sports science, training and research. Click here to access these articles as soon as they are released to maximise your performance

spacer1x1 - Nutrition - Carbo loading without overloading on glucose

Nutrition – The role of protein in sports performance

protein meal - Nutrition - The role of protein in sports performanceThis is an absolute MUST read! The best article I have ever read on the subject. It is based on proven scientific research (references included) without any commercial hype, and dispels all the common myths. – Mike

How much protein do athletes need and how safe are high-protein diets?

Protein is not just an essential nutrient, but the largest component in the body after water, typically representing about 15% of body weight. Most of this protein mass is found in skeletal muscle, which explains the importance of protein to athletes. However, proteins also play an important role in the following:
  • Transport and storage of other nutrients;
  • Catalysing biochemical reactions;
  • Control of growth and differentiation;
  • Immune protection;
  • Providing our bodies with structural integrity.

Although the basic biochemistry and functional roles of protein in the body have long been understood, there’s still a huge amount of mythology and confusion surrounding protein nutrition, especially where athletes are concerned. This is partly because of general misconceptions about basic protein metabolism and partly because new research continues to throw up surprises about exactly what constitutes optimum protein nutrition!

Figure 1, below, provides a brief overview of protein metabolism. The protein we eat is made up of around 20 amino acid ‘building blocks’. The process of digestion breaks down dietary protein into its constituent amino acid building blocks, which can then be absorbed into the body and reassembled to make various kinds of human protein, such as muscle, connective tissue, immune proteins, and so on.

Figure 1: overview of protein metabolism

protein metabolism - Nutrition - The role of protein in sports performance

However, it is important to understand that protein metabolism is in a constant state of flux; although muscle and other tissues contain a large amount of stored protein, this protein is not ‘locked away’. When dietary amino acids are insufficient, tissue protein can rapidly be broken down back to amino acid building blocks, which are then used to replenish the ‘amino acid pool’, a reservoir of amino acids that can be drawn upon to support such vital functions as energy production or immune function. This explains why muscle mass is often lost during times of stress, disease and heavy training loads, or poor nutrition.

Conversely, when dietary amino acids are in plentiful supply and other demands for protein are low, tissue protein synthesis can become the dominant process. The overall control of protein turnover – ie whether the body is in a state of anabolism (building up) or catabolism (breaking down), also known as positive or negative nitrogen balance – is governed by hormonal factors, caloric intake and availability of amino acids, particularly of the nine ‘essential’ amino acids that cannot be synthesised in the body and therefore have to be obtained from the diet.

Maintaining optimum protein status

An athlete has to move his or her body to perform, and this requires the muscles to generate force to accelerate body mass. As a rule of thumb, the greater an athlete’s power-to-weight ratio, the faster he or she can move, and (to a lesser extent) the longer he or she will be able to maintain any given speed of movement. Since all force and movement is generated by muscles, most power athletes benefit from maximising muscle mass and strength, while minimising the amount of superfluous body mass – ie fat.

And while out-and-out muscle strength is less important for endurance athletes, maintaining sufficient muscle mass is critically important, not least because high training volumes are known to increase the rate of protein oxidation from the amino acid pool, potentially leading to delayed recovery, a loss of muscle mass and consequent loss of power, and increased injury risk.

Given that athletic training is known to increase the demands on the amino acid pool, many athletes, particularly bodybuilders and strength athletes, adopt high-protein diets to maintain a positive nitrogen balance, or at least prevent catabolism and loss of muscle tissue. However, even today there remains much debate about how much protein athletes really need to optimise and maintain performance.

Protein v carbohydrate

There are other questions too. For example, should any extra protein be ingested at the expense of carbohydrate, the body’s preferred fuel for high-intensity training? And what about the possible health implications of high-protein diets, about which health professionals often express concerns?

Until recently the protein requirements of athletes were thought to be similar to those of sedentary people, and athletes were advised that they need only consume the recommended daily amount (RDA) of protein (currently set at 0.8- 1.0g of protein per kg of body weight per day) to maintain proper nitrogen balance. For a 70kg athlete, this would equate to 56-70g per day.

However, research over the past decade has indicated that athletes engaged in intense training actually need to ingest about 1.5-2 times the RDA in order to maintain a positive protein balance(1-5). This equates to 105-140g of protein per day for a 70kg athlete, which is equivalent to three to four medium-sized chicken breasts or 13-20oz of canned tuna per day! There is also evidence that training at altitude imposes an even higher demand for protein – perhaps as much as 2.2g per kg per day(6).

Unfortunately, these more recent findings on protein needs have not yet become widely accepted by some of the powers that be. For example, the UK’s Food Standards Agency website (in its section on sports nutrition) simply states that protein is important in the diet, especially ‘if you’re trying to build muscle’. It goes on to advise: ‘Try not to eat more protein than you need because your body won’t use it to build muscle. Instead it converts excess protein to fat, which is then stored, so try to make sure your protein intake is just right for your needs.’ However, it never actually states what those needs are.

Meanwhile, the EU’s Scientific Committee on Food recently acknowledged that the increased training loads and energy expenditure of athletes can increase protein requirements, and now recommends that their protein intake should comprise around 10-11% of total energy intake(7). For our mythical 70kg athlete, burning 3,000, 4,000 or even 5,000kcal per day (quite easily achieved with two-plus hours of vigorous training at or above 75% VO2max per day), this equates to just over 75, 100 or 125g of protein per day respectively.

Although foods like breads, cereals and legumes contain significant amounts of protein, which can add to that contributed by high-protein foods, such as meat, fish, milk and eggs, larger athletes, or those engaged in high volumes of training, may struggle to include the increased amounts of protein now recommended in a ‘normal’ diet; indeed, a number of nutritional surveys have indicated that protein insufficiency may be a problem for certain groups of athletes, including runners, cyclists, swimmers, triathletes, gymnasts, skaters and wrestlers(8).

Forty years ago, it was protein that dominated the thoughts of power athletes and bodybuilders. Employing the simple logic that muscles are made of protein, and that to build muscle you need lots of protein, steak-and-egg diets were the order of the day! But as the importance of carbohydrates in supplying energy and driving the insulin system (the most anabolic hormone in the body) became clearer, the emphasis gradually shifted.

This shift in emphasis was encouraged by an appreciation of the health benefits of dietary fibre present in unrefined carbohydrates, and also by research suggesting that very high protein intakes simply resulted in increased protein oxidation, imposing an additional load on the liver and kidneys. A scientific consensus began to form around the notion that diets containing substantially more than 1.0g of protein per kg per day were not only wasteful but potentially harmful, increasing the risk of kidney and liver problems, cardiac disease and even loss of bone density.

However, the recent meteoric rise in popularity of high-protein diets, such as Zone and Atkins, for slimmers has ignited a fierce debate about the safety and efficacy of high-protein diets, which is also relevant for athletes who routinely consume high-protein diets. In 2001, the American Heart Association’s nutrition committee published a statement on dietary protein intakes, claiming that: ‘Individuals who follow these [high-protein] diets are at risk for potential cardiac, renal, bone and liver abnormalities overall’(9).

If you examine the scientific literature, it is hard to see how this consensus, linking high protein intakes to increased health risks, has become so widespread. In a recent meta-review of the literature, Finnish scientists searched for any evidence supporting the hypothesis that high protein diets, containing two to three times the current RDA for protein, increase the risk of a number of health conditions – and drew a big fat blank(10). They concluded that:

  • There is no evidence to suggest that (in the absence of overt disease) renal function is impaired by high protein diets;
  • Far from reducing bone mineral density, high-protein diets may actually increase it;
  • Such diets are associated with lower not higher blood pressures.

These conclusions have also been confirmed by other researchers; healthy athletes should not, therefore, be dissuaded from increasing their protein intake to up to three times the RDA level if they so wish.

High-protein diets and hydration

There’s a fairly linear relationship between protein intake and urea production, which means that high protein diets increase the amount of urea the kidneys have to excrete. With this elevated production of urea comes an increase in the obligatory water requirement of the kidneys to do their job, and that in turn has raised the question of whether athletes (whose fluids needs are already increased) on high-protein diets are at increased risk of dehydration.

To answer this question, scientists at the University of Connecticut compared the hydration levels of athletes consuming low (0.8g per kg per day), medium (1.8g) and high (3.6g) protein diets, each containing the same number of calories(11). Analysis of the results showed that, while there were significant increases in urine and plasma urea on the high-protein diet, the effects of increasing dietary protein on fluid status was minimal.

Moreover, to date there have been no studies conclusively demonstrating that increased protein intake leads to a loss in total body water. However, the researchers pointed out that the subjects in their study probably consumed enough water to meet any increased requirement, which explains – at least in part – why their hydration status was not compromised. They also concluded that more research is needed. In the meantime, however, it seems prudent to recommend that all athletes on high-protein diets should drink plenty of extra fluid, especially in warm conditions.

For many athletes, power-to-weight ratio is more important than outright power for optimum performance, and this explains why reducing excess body fat is often beneficial. New evidence is now emerging that high-protein diets might actually help in this process. Although research indicates that, providing the same number of calories are eaten, the relative proportions of protein and carbohydrate in the diet do not affect the amount or composition of weight loss in a reduced calorie regime(12-14), these ratios do affect appetite, with subjects tending to be more hungry on higher carbohydrate intakes and less hungry on higher protein intakes.

More generally, scientists now believe that diet composition strongly affects ad lib energy intake, with both laboratory and free-living studies highlighting protein as a more satiating macronutrient than carbohydrate or fat(15). This theory is supported by studies indicating that subjects consuming high-protein (more than 20% protein by energy) diets consume less overall than those on low-protein diets(16,17). The exact mechanisms are as yet unclear, but probably involve hormonal and chemical changes in regions of the brain known to be associated in hunger and appetite control.

Protein and weight loss

In one of the studies mentioned above(17), 13 obese men were split into two groups and fed lowcalorie diets. One group received a high-protein diet (45% protein, 25% carbohydrate and 30% fat) and the other a high-carbohydrate diet (12% protein, 58% carbs and 30% fat). Not only was weight loss greater in the high-protein group but basal metabolism decreased less than in the highcarb group, suggesting that the high-protein diet was able to offset the loss in lean body mass (basal metabolism being a function of lean body mass) that normally occurs while dieting.

No studies of this type have been carried out on athletes, but it seems likely that high-protein diets have something to offer athletes seeking a reduction in body fat while conserving muscle tissue. While high-protein/low-carbohydrate diets of the type described above would not contain sufficient carbohydrate to permit normal training, our mythical 70kg athlete, consuming a 25% protein diet on a mildly calorie-restricted diet of 2,500kcals per day, would be consuming around 600kcal of protein, or 150g, a day. This is well within the ‘safety zone’ of two to three times the RDA (0.8-1.0g per kg per day) yet with a sufficiently high protein content to exert an increased satiation effect.

Moreover, the athlete would still be able to consume up to 50% carbohydrates (1,250kcal per day, sufficient for moderate training volumes), while consuming enough calories (25%) from fat to meet essential fat requirements. However, athletes need to remember, given the importance of carbohydrate for energy requirements, that even this regime would contain insufficient carbohydrate for higher-volume training and competition phases!

In summary, there is good evidence that athletes need a plentiful supply of protein in their diets and that, contrary to previous recommendations, they do need substantially more protein than their sedentary counterparts – at least 50% and possibly up to 120% more. For a 70kg athlete, this can mean up to 150g of pure protein per day.

However, the role of carbohydrates in supplying energy for fuel and recovery remain as important as ever, which means the diet must contain high-quality, low-fat sources of protein in order to enable adequate carbohydrate intake without an overall excess of calories. Simply assuming that because you eat more food than the average person you’ll be consuming adequate protein is not good enough!

There is no evidence that routinely exceeding the recommended protein intake has any additional benefits on nitrogen balance, unless this extra protein is consumed as a protein/ carbohydrate drink before, during or after training – something we’ll tackle in the next article (see below). However, there is evidence that even higher protein intakes may help suppress appetite, control hunger and reduce lean tissue loss during restricted calorie routines, which may be useful for athletes needing to reduce or maintain body weight, although such diets are not really compatible with high-volume training routines.

Finally, despite what you may have read elsewhere, healthy athletes can rest assured that high protein diets containing up to three times the current RDA for protein are perfectly safe, although it is important to remain well hydrated on such diets.

Andrew Hamilton

References

  1. J Appl Physiol 1992;73(2):767-75
  2. J Appl Physiol 1988;64(1):187-93
  3. J Appl Physiol 1992;73(5):1986-95
  4. Curr Opin Clin Nutr Metab Care 1999;2(6):533-7
  5. Sportscience 1999. Available: www.sportsci.org/jour/ 9901/rbk.html;3(1)
  6. Butterfield G (1991). Amino acids and high protein diets. In Lamb D, Williams M (editors), Perspectives in exercise science and sports medicine, vol 4; Ergogenics, enhancement of performance in exercise and sport (pages 87-122). Indianapolis, Indiana: Brown & Benchmark
  7. EU Scientific Committee on Food, 2004, Working Document – 20 April. Available: www.food.gov.uk/mult imedia/pdfs/foodsport workdoc.pdf
  8. Sports Nutrition Review Journal 2004; 1(1):1-44
  9. Circulation 2001; 104:1869-74
  10. Sports Nutrition Review Journal 2004; 1(1):45-51
  11. Presentation by WF Martin at Experimental Biology meeting, April 2002 New Orleans, USA
  12. Am J Clin Nutr 1996; 63, 174-178
  13. Diabet. Care 2002; 25, 652-657
  14. N Engl. J. Med 2003; 348, 2074- 2081
  15. Eur J Clin Nutr 1996; 50, 418-430
  16. Int J Obes Relat Metab Disord. 1999; 23, 528-536
  17. Int J Obes Relat Metab Disord. 1999; 23(11), 1202-6
This article was taken from the Peak Performance newsletter, the number one source of sports science, training and research. Click here to access these articles as soon as they are released to maximise your performance

spacer1x1 - Nutrition - The role of protein in sports performance

Sports Drinks – Recovering with hypotonic, isotonic and hypertonic drinks

Never fully understood this stuff until I read this article, which also explains why it may not be a good idea to only drink plain water after exercise in an effort to cut carbohydrates for weight loss – Mike

sportsdrinks - Sports Drinks - Recovering with hypotonic, isotonic and hypertonic drinks

The importance of post-exercise rehydration

Athletes at all levels often train more than once a day, which means they need to be able to make a rapid recovery between sessions. Most people who take their training seriously are now aware that ingestion of fluids is crucial to maintaining performance and aiding recovery. But the choice of drink can be critical. So which is best, plain water or a specially-formulated sports drink?

To answer that question we need to understand how water is absorbed and used by the body.

The rate at which your body absorbs water depends on a number of factors, one the the most important being the composition of the fluid ingested. It is the concentration of particles such as carbohydrate, sodium and, to a lesser extent, potassium that dictates the rate of absorption in the small intestine. As a rule, the higher the carbohydrate content of a drink the slower the rate of fluid uptake.

* Hypotonic drinks are dilute carbohydrate electrolyte solutions which are less concentrated than body fluids and are therefore rapidly absorbed by the body. They begin the rehydration process while simultaneously helping to replenish carbohydrate energy reserves. No proprietary versions of such drinks are currently available on the UK market since an Umbro product was withdrawn;

* Isotonic drinks have a similar carbohydrate electrolyte concentration to the body’s own fluids. They are best used later in the recovery process to boost energy intake while still encouraging fluid uptake during the final stages of rehydration. Proprietary brands include Liquid Power, Isostar and Lucozade Sport;

* Hypertonic drinks are solutions with a higher carbohydrate electrolyte concentration than body fluids. In general these types of drinks contain large amounts of carbohydrate and are therefore best used as energy supplements during periods of heavy training, when energy expenditure is likely to be high. Again, no proprietary versions are available in the UK, although you can make an isotonic drink hypertonic by making it up in a more concentrated form.

If you prefer to drink water alone after exercise, it is possible to achieve adequate rehydration if solid food which replaces lost electrolytes is consumed at the same time. If this is not possible, some form of electrolyte solution is essential.

This does not mean you should never drink water after exercise – just that you need to take account of your levels of fluid and electrolyte losses. Where losses are high and large volumes of fluid need to be consumed in a short period, it is important to consume sodium in combination with fluids if fluid balance is to be achieved and maintained.

Ian Carlton

This article was taken from the Peak Performance newsletter, the number one source of sports science, training and research. Click here to access these articles as soon as they are released to maximise your performance