Getting the Best Tri-Suit

Tri-SuitFor every activity, there is apparel that goes with it, and for triathlon athletes, a Tri Suit is their go to apparel for it can be worn for all the levels of triathlon. While some people choose to wear their Tri Suit under their wet suit, most will only wear their Tri Suit and start their competition wearing the same apparel they will be wearing at the finish line.

A Tri Suit should be chosen carefully, for not only is it not the cheapest peace of apparel one will own, because of its function, it has to have certain features to make it worth your money and consideration when you are looking to buy. So here is what to look for in a Tri Suit: comfort, durability, and functionality.

If you are a beginner triathlon athlete, you should get a suit that is cheaper, as you should feel the different suits for yourself, and see what are the features you like and what are the features you do not like, for the more expensive suits are each designed with comfort and speed in mind, but each could have different features that might not be to your liking.

A triathlon’s first leg is swimming. What will make your suit comfortable for this level is how water repellant it is, and how closely it contours your body. You want the least amount of friction and drag when swimming. This is especially important if the race you are competing in does not require you to wear a wet suit.

The next step of a triathlon is biking. For this purpose, your suit should have features that will both make it comfortable on the bike, and let it dry quickly. Many Tri Suits feature a pad or chamois that allow for comfort on the bike saddle. You should make sure that the pad does not chafe and does not slow you down during the running leg.

Womens-Tri-SuitThe chamois should be thin and your suit should be breathable for the suit to dry quickly. Most suits come with modern technology that allows them to dry quickly. The level, to which your suit repels the water while swimming, will come in handy here as the more water repellant it is, the faster it will dry. A mesh paneling on the suit will also help both its breathable quality and the speed at which it dries.

The last leg of the triathlon is running. For this leg, you will want a suit that is very light, and has flat stitching that lies flat against your skin and will not cause chafing while you run. Additionally, check to see if the suit has leg grabbers, or extra friction pads on the inside of the legs of the suite. This keeps the suit from riding up while you are running or biking.

For women suits, it is good to get a suit that has a padded bra built in, as wearing less layers and allowing your skin to breathe is quite important.

Cycling Training: can your pedalling technique make you a more efficient rider?

A very interesting article that sheds new light on what is considered correct cycle pedalling technique, and shakes up some well established dogmas giving us plenty of good food for thought… Mike

How to increase cycling efficiency to improve competition performance

Cycling Training Contents Box

You’d think that when it comes to technique, cycling is a delightfully simple sport. But over the years, a number of theories have been advanced about the best way for cyclists to pedal and maximise their pedalling efficiency. Joe Beer looks at the evidence and tries to separate fact from fiction.

From a clinical perspective, the bicycle holds the moving limbs of the lower body in a fixed arc; you have your foot in a rigid shoe, fixed to the pedal with a shoe cleat, which essentially attaches your foot to the end of a crank arm. When spinning the cranks (pedalling), this ‘closed circuit’ provides a fairly predetermined movement pattern, which allows for very little personal flair or style.

In effect, when studying the movement patterns during pedalling, all cyclists’ legs look fairly similar to one another, regardless of the level of exertion, the terrain, or whether the rider is in or out of the saddle. This is in marked contrast to the huge variations that can be seen in runners’ leg gait or freestyle swimmers’ arm movement patterns. The key question, therefore, is whether and how can you become better at pedalling?

Foot action

There are many ways that riders have attempted to improve cycling efficiency (the amount of power produced for a given level of oxygen consumption), most notably trying to pedal in a way that accentuates the upward lift of the foot, and varying the pitch of the ankle in various ways. The exact method, terminology and descriptions of this technique depend on whose interpretation you read. Suffice to say there is no evidence that these methods produce any significant improvements in efficiency over the normal, simple method of simply concentrating on the ‘press-down’ phase of each pedal revolution(1). The best riders push down harder than the slower riders and therefore go faster – it’s as simple as that!

Rule #1: push the pedals and don’t over-analyse any special foot action

Copying the pros

It’s hard to know whether pro riders are fit, good at pedalling efficiently or fit and good at pedalling efficiently! Few studies have properly tracked the career of elite cyclists so if there are any changes in economy over time, the data to support this notion are virtually non-existent.

However, there is a famous paper, on a certain Lance Armstrong, which suggests the measured gains in efficiency in his early years (see box 1) were due to changes to the muscle structure as a result of training and maturity(2). However, this data has been challenged by some researchers(3,4). They have suggested that the time periods examined don’t show year-on-year comparisons, that VO2max and body mass changes were more significant than riding economy and, most importantly, that fundamental problems in data collection make the data impossible to compare over a seven-year period. Granted, the data presented by Coyle(2) show improvements in Armstrong’s fitness; however, this improved efficiency may have been an indirect observation rather than the actual cause of his subsequent success.

Lance Armstrong's Fitness

Likewise, a study using 69 cyclists from recreational to world-class level suggests that there are not significant differences in cycling economy between such widely varying subjects(5). So rather than their superb pedalling efficiency, the key to being a top dog cycling pro may instead be the maximum power, aerobic fuel efficiency, tactical awareness and fatigue resistance.

Rule #2: your potential maximum riding economy is likely already innately fixed. However, lower body fat levels and bike weight, increased strength and power, better tactics and correct sports nutrition can all make you a much better rider.

Fitness first

A common assumption is that elite riders must share similar traits in order to get to the top. One of these assumptions is that elite riders must be efficient because they ride huge distances every year (circa 25,000-45,000km). However, this is debatable. Data from professional teams has shown that across a batch of 12 world class riders cycling at around 400 watts (around 5 watts per kilo of body weight) gross efficiency can vary from 20.9 to 28% – in other words average to super-human efficiency(7). This is a huge variation considering these riders had all shone at elite level and all ridden massive distances.

Interestingly, data presented by the Spanish team that did the research actually suggests that those with a lower maximum aerobic capacity (VO2max) can adapt and make up for such shortcomings with increased riding efficiency(7). Interestingly, this phenomenon (of modest VO2max but superior efficiency) has also been hinted at by some researchers from the field of running biomechanics.

Higher cadence?

Many people have examined Lance Armstrong’s riding ability and (mistakenly) deduced that for all riders, the best way to pedal well is to spin the cranks at 95-100rpm. However, lets make a couple of things crystal clear:

1. The higher cadences used by professional riders is because they are producing as much as 400-500 watts in time-trial efforts or climbs of 20 to 60 minutes;

2. Recovery from day-to-day ‘tour’ riding is easier with higher cadence riding, so riders chose this as a matter of energy conservation(8). So while Lance may ride a time trial at close on 100rpm, he is sustaining over 450 watts. Lesser mortals can probably only sustain around 250-350 watts, so cadence can be significantly lower – say around 75-85rpm. This is especially so when climbing where many cyclists can find improved efficiency (and ability to climb) at around 70rpm.

Macintosh and his co-workers have shown that optimal cadence for 100, 200, 300 and 400w cycling occurs at 57, 70, 86 and 99rpm respectively(9). This casts some doubt on the age-old advice that cyclists should aim for 95rpm because ‘that’s what the pros do’. Sadly though, we don’t all generate 400 watts in time trial and fast climb efforts! In fact, in a review of studies in this area, scientists concluded that ‘the choice of a relatively high cadence during cycling at low to moderate intensity is uneconomical and could compromise performance during prolonged cycling’(10).

Rule #3: choose a cadence that mirrors your power output; slower riding and warm ups should use a lower cadence while high-effort time trials should use a higher cadence. Unless you’re an elite rider, it’s unlikely you’ll benefit from using cadences exceeding around 85rpm

Five things NOT to do to increase efficiency!

  1. Focus on lots of turbo trainer drills – it’s unlikely to help efficiency. Instead use rollers for balance, coordination and a smoother pedal action;
  2. Place a lot of emphasis on high intensity intervals in spin classes – there’s no proof this helps. A fixed wheel bike on the road or lower intensity coordination spin-bike riding will likely be more productive;
  3. Buy independent ‘Powercranks’ (where left and right cranks can spin independently of each other) These have been tested and have shown no benefits(6);
  4. Significantly cut down on carbohydrates or restrict feeding on longer rides to force your body to adapt and become more efficient. This is just likely to cause illness and burnout;
  5. Do excessive high cadence (speed of pedal rotation) riding in an attempt to be able to spin at 110 or even 120rpm. Unless you can match this up to a 400-450 watt sustained efforts or greater you are just making yourself great at pressing down on air, not forcing the pedals downwards!

Four ways to get more efficient

  1. Ride rollers: these consist of a simple three-barrel device, which is becoming increasingly overlooked now widescreen training systems can be connected to an indoor trainer. However, efficient track cyclists, time trialists and cyclo-cross riders use rollers as part of their efficient riding programme. Short-term observations suggest the smooth pedal style that balancing on such an unforgiving surface gives can equate to 1-2% improvement in efficiency measures.
  2. Ride more: though we don’t have a direct mileage verses efficiency table to prove more miles means better efficiency, good riders do ride their bike several times per week. A minimum level of riding must be adhered to (like any skill). Varying the cadences used, the type of bike (fixed wheel, night riding, off-road mountain bike, etc) and developing handling all helps to eke out a more efficient rider/bike partnership.
  3. Use non-circular chain rings (like the Cervelo test team!). The variable circumference Q-Ring front chain rings can give improved pedal efficiency(11). By increasing the resistance on the down-stroke and easing up across the bottom and top of the pedal stroke, non-circular rings can make pedalling easier without having to think about a new pedalling style, especially when climbing.
  4. Vary cadence deliberately, from very low cadence hills (eg 50rpm in a big gear with smooth, controlled pressure) up to fast spinning brief eight-second sprints to ignite lots of muscle fibres. There’s more than one cadence sweet spot or one speed of riding. By keeping it varied, the nervous system, muscles and energy systems have to adapt.

References

1 Med Sci Sports Exerc 2007; 39(6):991-995.
2. J. Appl. Physiol 2005; 98:2191-2196
3. J. Appl. Physiol 2005; 99: 1630-1631
4. J Appl Physiol 2005; 99: 1628-1629
5. Int J Sports Med 2004; 25(5): 374-379
6. Int J Sports Physiol Perform. 2009; 4: 18-28
7. Med Sci Sports Exerc 2002; 34(12):2079-2084
8. Med Sci Sports Exerc 2001; 33(8): 1361-1366
9. Med Sci Sports Exerc 2000; 32(7): 1281-1287
10. Int J. Sp. Phys Perf 2009; 4: 3-17
11. J Physiol Anthropol. 2009; 28(6):261-7

Joe Beer is an endurance coach working with triathletes, duathletes, sportive riders and time-trialists through his company JBST.com. He is also the author of ‘Need to Know Triathlon’ (Harper Collins)

Get on the road to gold-medal form and smash your competition.
Try Peak Performance today for just $1.97.

?

Triathlon Training – Managing Arrhythmia Part 3

The final piece of the puzzle drops into place…

Modern Traditional Racing SaddleWell listen up guys and dolls, this is serious stuff that effects all of you! Your sexual health could be at great great risk because of the saddle you use!

On an annual basis, bicycle riding involves several hundred million people worldwide. Studies have linked perineal pressure caused by straddling traditional bicycle seats to numbness, urinary tract and yeast infections, prostate inflammation and impotence.

For male riders, in addition to the discomfort and numbness associated with a traditional saddle, there is an increased susceptibility to restricted blood flow, which can lead to arterial occlusion and permanent erectile dysfunction.

For women, the restricted blood flow and hardening of the genital arteries can lead to an inability to reach orgasm. It has been found that as little as 11% of a person’s body weight can compress the genital artery!

So what has  a bike saddle got to do with my arrhythmia?

This perineal pressure and it’s damaging effect, is far greater for triathletes in the aero position, and although I have had minor prostate issues for many years, it was under control and only became severely aggravated after I started triathlon training and riding a bike just over two years ago.

As outlined in my earlier blog post Triathlon Training – Killing Six Birds With One Stone, it is my enlarged prostrate that prohibited the emptying of my bladder, which then got me up every hour at night to go to the loo, which then prevented me getting sufficient rest to recover from training, which then lead to my being in an overtrained state, which then lead to severely aggravated heart arrhythmia!

…so amazingly it actually all started with the bike saddle!

The traditional bike saddle shape has in effect changed very little since the original “Penny Farthing” of yesteryear, but thank goodness at least one innovative manufacturer has at last taken the matter seriously enough to do the necessary research and develop a new design that completely handles the problem:-

Adamo Racing SaddleISM Adamo Saddles

Here’s an interesting read on the health benefits of no nose saddles vs. traditional saddles.

On September 5, 2006 Steve Toll traveled to the University of Hamburg to have the new Adamo Road saddle and the Adamo Racing saddle tested by noted German urologist Dr. Frank Sommer. At the conclusion of the testing Dr. Sommer was pleased with the results and congratulated Steve on his design and achievements. Dr. Sommer stated, “A saddle where there is hardly any blood loss. Which is excellent to preserve sexuality and for preventing erectile dysfunction.”

While normal testing involves a 15-minute ride on a saddle, the test using the ISM™ was discontinued after 12 minutes.  Why?  Dr. Sommer commented, “It doesn’t get any better than this.”  In fact, blood flow in the perineum area remained at 100% throughout the test with the ISM™, a mark rarely seen in bicycle saddle testing.

In addition, Dr. Sommer’s prior research has indicated that some saddles restrict blood flow in the perineum area by as much as 95% within the first minute of a ride.  Other studies indicate that such restriction over a long period can result in permanent erectile damage.

The ISM™ is a first-of-its-kind seat.  If a family is in your future, or you’re simply tired of the pain and discomfort associated with a traditional saddle, rest your bones on the ISM™.  It’s medically better for you.

Adamo saddles are currently available from Troisport (best price), Wayne Pheiffer and Triangle Sports in South Africa, so get one now as besides anything else your butt is going to thank you big time!

I will never ride again with any other…

Articles

NIOSH (National Institute for Occupational Safety & Health) Update

National Geographic Adventure, April 2003 – Riding Rough: New Evidence Continues to
Link Biking to Impotence by Jim Thornton.

Bicycling Magazine, August 1997 – The Unseen Danger by Joe Kita

Other Research Studies: Available Through the National Library of Medicine

“Impotence and Nerve Entrapment in Long Distance Amateur Cyclist”
Andersen K.V., Bovim G.
Laboratory of Clinical Neurophysiology, Trondheim University Hospital, Norway.

“Does Bicycling Contribute to the Risk of Erectile Dysfunction?”
Goldstein I., Marceau L., Kleinman K., McKinlay J.

“Type of Saddle and Sitting Position Influence Penile Oxygen Pressure while Cycling“
Dr. Frank Sommer, Cologne University, March 2003.

“Pressure Distribution on Bicycle Saddles” (a comparison between normal “flat” saddles
with gel and saddles with a “hole” in the perineal area)
Renato Rodano, Roberto Squadrone, Massimiliano Sacchi, Alberto Marzegan
Centro di Bioingegneria, Milan, Italy – November 2002.

“Ergonomics of 2 Bicycle Saddles” (Pressure at the Pudendal Area in Women of a
Normal Saddle with Gel and of a Saddle with a Hole)
Dr. Ingo Froboese – Deutsche Sporthochschule, Cologne, Germany
Dr. Luc Baeyens – Centre Hospitalier Universitaire Brugmann, Brussels, Belgium.